2(3x − 9)(x + 4) ≤ 0
Ответы на вопрос
Ответил Andron2p
1
Ответ:
To solve the inequality \(2(3x - 9)(x + 4) \leq 0\), you can use the sign analysis method. The critical points are where each factor equals zero: \(x = 3\), \(x = -4\), and \(x = 9/3\).
Now, you can create intervals using these critical points and test a point in each interval to determine the sign of the expression. The solution is where the expression is less than or equal to zero.
The solution is \(x \in (-\infty, -4] \cup [3, 9/3]\).
OliverPLA:
Thank you
Новые вопросы