Алгебра, вопрос задал Reideen , 6 лет назад

Задание приложено...

Приложения:

SM4Higgs: курсы повышения квалификации или что?...

Ответы на вопрос

Ответил mathkot
1

Ответ:

\boxed{ \boldsymbol{ \lim_{n \to \infty} \dfrac{b}{a^{n}} = 0; a > 1 } }

Теоремы: (при условии, что a_{n},b_{n} - сходящиеся последовательности)

Предел суммы:

\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n

Предел произведения:

\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n

Предел частного:

\lim_{n \to \infty} \dfrac{a_{n}}{b_{n}} = \dfrac{\lim_{n \to \infty} a_n }{\lim_{n \to \infty} b_n } при условии, что b_{n} \neq 0; \lim_{n \to \infty} b_{n} \neq 0

34.5

1) \displaystyle  \lim_{n \to \infty} \bigg ( \frac{2n + 1}{3 - 2n} \cdot \frac{n + 3}{4n + 5} \bigg) = \lim_{n \to \infty} \frac{2n + 1}{3 - 2n} \cdot \lim_{n \to \infty} \frac{n + 3}{4n + 5}   =

\displaystyle = \lim_{n \to \infty} \frac{\dfrac{2n + 1}{n} }{\dfrac{3 - 2n}{n} } \cdot \lim_{n \to \infty} \frac{\dfrac{n + 3}{n} }{\dfrac{4n + 5}{n} } = \lim_{n \to \infty} \frac{2 + \dfrac{1}{n}  }{\dfrac{3}{n} -2  } \cdot \lim_{n \to \infty} \frac{1 + \dfrac{3}{n}  }{4 + \dfrac{5}{n}  } =

\displaystyle =   \frac{ \lim_{n \to \infty} \bigg ( 2 + \dfrac{1}{n} \bigg)  }{\lim_{n \to \infty} \bigg( \dfrac{3}{n} -2 \bigg) } \cdot \lim_{n \to \infty} \frac{\lim_{n \to \infty} \bigg ( 1 + \dfrac{3}{n} \bigg) }{\lim_{n \to \infty} \bigg( 4 + \dfrac{5}{n} \bigg) } =

= \displaystyle  \frac{\lim_{n \to \infty} 2 + \lim_{n \to \infty} \dfrac{1}{n}  }{\lim_{n \to \infty}\dfrac{3}{n} - \lim_{n \to \infty}2  } \cdot  \frac{\lim_{n \to \infty}1 +\lim_{n \to \infty} \dfrac{3}{n}  }{\lim_{n \to \infty}4 +\lim_{n \to \infty} \dfrac{5}{n}  } = -0,25

2)

\displaystyle  \lim_{n \to \infty} \frac{2n(3n - 1)(n + 4)}{(4 + 5n)(2n + 1)(n + 1)} = \lim_{n \to \infty} \frac{2n(3n - 1)}{(4 + 5n)(2n + 1)} \cdot  \lim_{n \to \infty} \frac{(n + 4)}{(n + 1)} = 0,6

а) \displaystyle \lim_{n \to \infty} \frac{2n(3n - 1)}{(4 + 5n)(2n + 1)} = \lim_{n \to \infty} \frac{6n^{2} - 2n}{8n + 4 + 10n^{2} + 5n} =  \lim_{n \to \infty} \frac{6n^{2} - 2n}{ 10n^{2} + 13n + 4} =

\displaystyle = \lim_{n \to \infty} \frac{\dfrac{6n^{2} - 2n}{n^{2}} }{ \dfrac{10n^{2} + 13n + 4}{n^{2}} } =  \lim_{n \to \infty} \frac{6  - \dfrac{2}{n} }{10 + \dfrac{13}{n} + \dfrac{4}{n^{2}}  } = \frac{ \lim_{n \to \infty}  \bigg( 6  - \dfrac{2}{n} \bigg) }{ \lim_{n \to \infty}   \bigg(10 + \dfrac{13}{n} + \dfrac{4}{n^{2}} \bigg) } =

\displaystyle = \frac{ \lim_{n \to \infty} 6  - \lim_{n \to \infty} \dfrac{2}{n} }{\lim_{n \to \infty}10 + \lim_{n \to \infty}\dfrac{13}{n} + \lim_{n \to \infty} \dfrac{4}{n^{2}}  } = \frac{6 - 0}{10 + 0 + 0 } = \frac{6}{10} =  \frac{3}{5} = 0,6

б) \displaystyle \lim_{n \to \infty} \frac{(n + 4)}{(n + 1)} = \lim_{n \to \infty} \frac{\dfrac{n + 4}{n} }{\dfrac{n + 1}{n} } =  \lim_{n \to \infty} \frac{1 + \dfrac{4}{n} }{1 + \dfrac{1}{n} } = \frac{ \lim_{n \to \infty}   \bigg( 1 + \dfrac{4}{n} \bigg) }{\lim_{n \to \infty}  \bigg( 1 + \dfrac{1}{n} \bigg)} =

\displaystyle = \frac{ \lim_{n \to \infty}   1 +  \lim_{n \to \infty} \dfrac{4}{n} }{ \lim_{n \to \infty} 1 +  \lim_{n \to \infty}\dfrac{1}{n} } = 1

3) \displaystyle  \lim_{n \to \infty} \frac{(n + 1)(n - 2)(2n + 3)}{(4n - 1)(n + 3)(5n - 2)}  = \lim_{n \to \infty} \frac{n + 1}{4n - 1}  \cdot \lim_{n \to \infty} \frac{n - 2}{n + 3}  \cdot \lim_{n \to \infty} \frac{2n + 3}{5n - 2}  = 0,1

а) \displaystyle \lim_{n \to \infty} \frac{n + 1}{4n - 1} = \lim_{n \to \infty} \frac{\dfrac{n + 1}{n} }{\dfrac{4n - 1}{n} } =  \lim_{n \to \infty} \frac{1 + \dfrac{1}{n} }{4 - \dfrac{1}{n} } =  \frac{\lim_{n \to \infty} \bigg( 1 + \dfrac{1}{n} \bigg) }{\lim_{n \to \infty} \bigg( 4 - \dfrac{1}{n} \bigg) } =

\displaystyle =  \frac{ \lim_{n \to \infty}  1 + \lim_{n \to \infty}  \dfrac{1}{n} }{\lim_{n \to \infty}  4 -  \lim_{n \to \infty} \dfrac{1}{n} } =  \frac{1}{4}

б) \displaystyle \lim_{n \to \infty} \frac{n - 2}{n + 3} = \lim_{n \to \infty} \frac{\dfrac{n - 2}{n} }{\dfrac{n + 3}{n} } =  \lim_{n \to \infty} \frac{1 - \dfrac{2}{n} }{1 + \dfrac{3}{n} } =  \frac{\lim_{n \to \infty} \bigg( 1 - \dfrac{2}{n} \bigg) }{\lim_{n \to \infty} \bigg( 1 + \dfrac{3}{n} \bigg) } =

\displaystyle =  \frac{ \lim_{n \to \infty}  1 - \lim_{n \to \infty}  \dfrac{2}{n} }{\lim_{n \to \infty}  1 +  \lim_{n \to \infty} \dfrac{3}{n} } = 1

в) \displaystyle \lim_{n \to \infty} \frac{2n + 3}{5n - 2} = \lim_{n \to \infty} \frac{\dfrac{2n + 3}{n} }{\dfrac{5n - 2}{n} } =  \lim_{n \to \infty} \frac{2 + \dfrac{3}{n} }{5 - \dfrac{2}{n} }  = \frac{ \lim_{n \to \infty}\bigg ( 2 + \dfrac{3}{n} \bigg)}{ \lim_{n \to \infty}\bigg (5 - \dfrac{2}{n} \bigg)} =

\displaystyle =  \frac{ \lim_{n \to \infty}  2 + \lim_{n \to \infty}  \dfrac{3}{n} }{ \lim_{n \to \infty}  5 - \lim_{n \to \infty} \dfrac{2}{n} } = \frac{2}{5}

Новые вопросы