y(z)= 3 cos^2 x + 3√2 sin x+ 4
y`(z)=0
Ответы на вопрос
Ответил nKrynka
0
Решение
Y(x)= 3 cos^2 x + 3√2 sin x+ 4
y` = 6cosx * (- sinx) + 3√2cosx = - 6sinxcosx + 3√2sinx
Если y`(x)=0, то
- 6sinxcosx + 3√2sinx = 0
6sinxcosx - 3√2sinx = 0
3sinx(2cosx - √2) = 0
1) 3 sinx = 0
sinx = 0
x = πk, k ∈ Z
2) 2cosx - √2 = 0
cosx = √2/2
x = +-arccos(√2/2) + 2πn, n ∈ z
x = +-(π/4) + 2πn, n ∈ z
Y(x)= 3 cos^2 x + 3√2 sin x+ 4
y` = 6cosx * (- sinx) + 3√2cosx = - 6sinxcosx + 3√2sinx
Если y`(x)=0, то
- 6sinxcosx + 3√2sinx = 0
6sinxcosx - 3√2sinx = 0
3sinx(2cosx - √2) = 0
1) 3 sinx = 0
sinx = 0
x = πk, k ∈ Z
2) 2cosx - √2 = 0
cosx = √2/2
x = +-arccos(√2/2) + 2πn, n ∈ z
x = +-(π/4) + 2πn, n ∈ z
Новые вопросы
Математика,
2 года назад
Химия,
2 года назад
Физика,
8 лет назад
Математика,
9 лет назад
Музыка,
9 лет назад