y=2xˆ2-8x+20 -12 найти наименьшее значение функции
Ответы на вопрос
Ответил Аноним
0
Наименьшее значение квадратичной функции равно ординате вершины параболы, ветки которой направлены вверх.
m=-b/(2a)=-(-8)/(2*2)=8/4=2 - абсциса вершины;
n=y(2)=2*4-8*2-12=-20 - ордината вершины.
Значит y(max)=-20.
Ответ: -20.
m=-b/(2a)=-(-8)/(2*2)=8/4=2 - абсциса вершины;
n=y(2)=2*4-8*2-12=-20 - ордината вершины.
Значит y(max)=-20.
Ответ: -20.
Новые вопросы