Выполните деление комплексных чисел
а) 1/i
б) 1/(1-i)
в) (1-i)/(1+i)
г) (3-2i)/(1+3i)
Ответы на вопрос
Ответил Shelkovaia
0
а) 1i = ((1)(-1i))((1i)(-1i)) =( -1·1i)(1·1) = -1i1 = -1i
б) 1/(1-i)=(1)(1 + 1i)(1 - 1i)(1 + 1i) = = 1·1 + 1·1i1·1 + 1·1 = 1 + 1i1 + 1 = 1 + 1i2 = 0.5 + 0.5i
в) (1-i)/(1+i)=(1 - 1i)(1 - 1i)(1 + 1i)(1 - 1i) = 1·1 - 1·1i - 1·1i + 1·1i^21·1 + 1·1 = 1 - 1i - 1i - 11 + 1 = -2i2 = -1i
г) (3-2i)/(1+3i)=(3 - 2i)(1 - 3i)(1 + 3i)(1 - 3i) = 3·1 - 3·3i - 2·1i + 2·3i^21·1 + 3·3 = 3 - 9i - 2i - 61 + 9 = -3 - 11i10 = -0.3 - 1.1i
б) 1/(1-i)=(1)(1 + 1i)(1 - 1i)(1 + 1i) = = 1·1 + 1·1i1·1 + 1·1 = 1 + 1i1 + 1 = 1 + 1i2 = 0.5 + 0.5i
в) (1-i)/(1+i)=(1 - 1i)(1 - 1i)(1 + 1i)(1 - 1i) = 1·1 - 1·1i - 1·1i + 1·1i^21·1 + 1·1 = 1 - 1i - 1i - 11 + 1 = -2i2 = -1i
г) (3-2i)/(1+3i)=(3 - 2i)(1 - 3i)(1 + 3i)(1 - 3i) = 3·1 - 3·3i - 2·1i + 2·3i^21·1 + 3·3 = 3 - 9i - 2i - 61 + 9 = -3 - 11i10 = -0.3 - 1.1i
Новые вопросы
Физика,
2 года назад
Математика,
2 года назад
Алгебра,
8 лет назад
Математика,
8 лет назад
Математика,
9 лет назад