Геометрия, вопрос задал abakova211298 , 2 года назад

Выполнить задание
1. основание прямой призмы - равнобедренная трапеция, боковая сторона которой равна 5, а основание 12 и 20. Боковое ребро призмы равно 3. Найдите площадь полной поверхности призмы
а) 222 б) 249 в) 264 г) 286
2. Сторона основания и высота правильной треугольной пирамиды равна 6 и 12 соответственно. Найдите тангенс угла между боковым ребром и плоскостью основания пирамиды
С подробным решением пожалуйста!

Ответы на вопрос

Ответил Irka11110
1
2)Пусть сторона квадрата основания равна а, а высота пирамиды равна h.Тогда диагональ квадрата основания равна акор2, ее половина равна (акор2)/2Тогда тангенс угла между боковым ребром и основанием равен отношению высоты пирамиды к половине диагонали и равен:2h/(акор2) = кор2Отсюда 2h/а = 2Тангенс угла между боковой гранью и основанием равен отношению высоты пирамиды к половине стороны квадрата основания, т.е:h/(а/2) = 2h/а = 2.Ответ: 2.
Приложения:
Новые вопросы