Алгебра, вопрос задал manalit28 , 2 года назад

Вычислите:
----------------------​

Приложения:

Ответы на вопрос

Ответил Miroslava227
1

Ответ:

1.

 \frac{ \sin( \beta )  \cos( \beta )  + 2}{5 \cos {}^{2} ( \beta )  + 1}  = \\  =   \frac{ \sin( \beta )  \cos( \beta )  + 2 \sin {}^{2} ( \beta )   + 2\cos {}^{2} ( \beta ) }{5 \cos {}^{2} ( \beta )  +  \sin {}^{2} ( \beta )  +  \cos {}^{2} ( \beta ) }  =  \\  =  \frac{ \sin( \beta )  \cos( \beta )  + 2 \sin {}^{2} ( \beta )  + 2\cos {}^{2} ( \beta )  }{6 \cos {}^{2} ( \beta )  +  \sin {}^{2} ( \beta ) }  =   \\  = \frac{ \cos {}^{2} ( \beta ) ( \frac{ \sin( \beta ) }{ \cos( \beta ) }  +  \frac{2 \sin {}^{2} ( \beta ) }{ \cos {}^{2} ( \beta ) }  + 2)}{ \cos {}^{2} ( \beta )(6 +  \frac{ \sin {}^{2} (  \beta  ) }{ \cos {}^{2} ( \beta ) }  }  =  \\  =  \frac{tg \beta  + 2 {tg}^{2} \beta  + 2 }{6 +  {tg}^{2} \beta  }  =  \\  \\  =  \frac{2 + 2 \times 4 + 2}{6 + 4}  =  \frac{12}{10}  = 1.2

2.

 \frac{ \sin( \beta )  \cos( \beta )  - 3}{6 \cos {}^{2} ( \beta ) -  \sin {}^{2} ( \beta )  }  =  \\  =  \frac{ \sin( \beta )  \cos( \beta ) - 3 \sin {}^{2} ( \beta )  - 3 \cos {}^{2} ( \beta )  }{ 6\cos {}^{2} ( \beta )  - \sin {}^{2} ( \beta )  }  =  \\  =  \frac{ \cos {}^{2} ( \beta )( \frac{ \sin( \beta ) }{ \cos( \beta ) } - 3 \frac{ \sin {}^{2} ( \beta ) }{ \cos {}^{2} ( \beta ) }   - 3) }{ \cos {}^{2} ( \beta ) (6 -  \frac{ \sin {}^{2} ( \beta ) }{ \cos {}^{2} ( \beta ) } )}  =  \\  =  \frac{tg \beta  - 3  {tg}^{2}  \beta  - 3 }{6 -  {tg}^{2} \beta  }  =  \\  \\  =  \frac{ - 2 - 12 - 3}{6 - 4}  =  \frac{ - 17}{2}  =  - 6.5

3.

 \frac{2 \sin( \beta )  \cos( \beta ) + 3} {4 \cos {}^{2} ( \beta )  +  \sin {}^{2} ( \beta ) }  =  \\  =  \frac{2 \sin( \beta ) \cos( \beta ) + 3 \sin {}^{2} ( \beta )    + 3\cos {}^{2} ( \beta )  }{4 \cos {}^{2} ( \beta ) +  \sin {}^{2} ( \beta )  }  =  \\  =  \frac{2tg  \beta  + 3 {tg}^{2}   \beta  + 3  }{4 +  {tg}^{2}   \beta  }  =  \\  \\  =  \frac{ - 8 + 3 \times 16 + 3}{4 + 16}  =  \frac{ - 5 + 48}{20}  =  \\  =  \frac{43}{20}

4

 \frac{ \cos {}^{2} ( \beta ) + 2 }{ \cos {}^{2} ( \beta )  + 3 \sin( \beta )  \cos( \beta ) }  =  \\  =  \frac{ \cos {}^{2} ( \beta )   + 2\sin {}^{2} ( \beta )  + 2\cos {}^{2} ( \beta )  }{ \cos {}^{2} ( \beta ) + 3  \sin( \beta )  \cos( \beta ) }  =  \\  =  \frac{2 \sin {}^{2} ( \beta )   + 3\cos {}^{2} ( \beta ) }{ \cos {}^{2} ( \beta )  + 3 \sin( \beta ) \cos( \beta )  }  =  \\  =  \frac{2 {tg}^{2}  \beta  + 3}{1 + 3tg  \beta  }  =  \\  \\  =  \frac{2 \times 9 + 3}{1 + 9}  =  \frac{21}{10}  = 2.1

Новые вопросы