Вопросик такой: если у нас есть выражение например x=y, то оно ни как не ограничивается, просто прямая. А если например x^2=y^2, то x>=0;y>=0. А если например |x|=y, то просто x>=0. Я ВСЕ ВЕРНО ПОНИМАЮ?
И подскажите кто нить пожалуйста как решать пример типа y=V4-x^2 ( y равняется корень из (4-x в квадрате)
Ответы на вопрос
Ответил hote
0
- если например |x|=y, то просто x любой а вот У>=0.
- если х²=у² то Х любой; У любой
x^2-y^2=(x-y)(x+y)=0 графически это две прямые y=x и y= - x
- У=√ 4-х²
Область определения 4-х²≥0
4≥х²
-2≤х≤2
- если х²=у² то Х любой; У любой
x^2-y^2=(x-y)(x+y)=0 графически это две прямые y=x и y= - x
- У=√ 4-х²
Область определения 4-х²≥0
4≥х²
-2≤х≤2
Ответил ZZweRRuga
0
Спасибо большое за ответ, но можешь объяснить почему же таки x будет любым в х²=у² я например считаю что х>=0,и вообще я учусь в девятом классе на пятерки... и очень странно что у меня возник какойто глюк с этим вопросом...
Ответил ZZweRRuga
0
А вообще, на самом деле так короче окружность с центром в начале координат и радиусом 2
Ответил hote
0
х²=у² это не окружность, окружность это х²+у²= 4
Ответил hote
0
т.е. х переменная ее значение определяется только ОДЗ.. в данном случае х не ограничен а вот У зависимая переменная.. т.к. она определяется у=корень из х^2 или у=IxI.. а значит х любой а у только положительный
Новые вопросы
Русский язык,
2 года назад
Английский язык,
2 года назад
Физика,
9 лет назад
Математика,
9 лет назад
Алгебра,
10 лет назад
Биология,
10 лет назад