Алгебра, вопрос задал Макс105 , 10 лет назад

Верно так? 

log ^{2}  _{2}(x-6)^2=log_{2}(x-6)*log_{2}(x-6)

Ответы на вопрос

Ответил Alexаndr
0
log ^{2} _{2}(x-6)^2=log_{2}(x-6)^2*log_{2}(x-6)^2=\=log_{2}(x-6)(x-6)*log_{2}(x-6)(x-6)=(log_2(x-6)+\+log_2(x-6))*(log_2(x-6)+log_2(x-6))
Ответил Макс105
0
Что с квадратом логарифма сделать?
Ответил Alexаndr
0
тебе левую часть разложить надо? или что?
Ответил Макс105
0
Да.Как-то раскидать это.
Ответил Alexаndr
0
стооооооп тебе надо левую часть раскидать или пример в целом решить,ну и левую и правую часть использовать
Ответил Макс105
0
Просто левую часть раскидать. Там дальше еще огромный пример. Это С3. Если бы я попросил решить,то написал бы "=0". У меня всё строго)
Ответил Аноним
0
4log²(2)(x-6)-log²(2)(x-6)=0
3log²(2)(x-6)=0
log²(2)(x-6)=0
x-6=1⇒x=7

Если верно или нет, то
4log²(2)(x-6)≠log²(2)(x-6)

Ответил Макс105
0
Спасибо. Но мне не надо решать. Мне надо просто левую часть раскидать. Приравнивать к нулю не надо.
Ответил Макс105
0
Я раскидал не правильно,человек выше написал. Помогите разложить.
Ответил Alexаndr
0
щас...
Новые вопросы