в трапеции ABCD угол A = 90 градусов, AС = 6 корень 2, ВС = 6, DE - высота треугольника ACD, а tgACD = 2. найдите CE
Ответы на вопрос
Ответил KuOV
0
ΔАВС: cos∠ACB = BC/AC = 6 / (6√2) = 1/√2 = √2/2, ⇒
∠АСВ = 45°
∠CAD = ∠ACB = 45° как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АС.
Тангенс угла ACD положительный, значит этот угол острый, тогда треугольник ACD остроугольный и высота DE лежит внутри треугольника.
ΔAED: ∠AED = 90°, ∠EAD = 45°, ⇒ треугольник равнобедренный,
AE = ED.
Пусть СЕ = х, тогда АЕ = ED = 6√2 - х.
ΔCED: tg∠ECD = ED/CE
2 = (6√2 - x) / x
2x = 6√2 - x
3x = 6√2
x = 2√2
CE = 2√2 см
∠АСВ = 45°
∠CAD = ∠ACB = 45° как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АС.
Тангенс угла ACD положительный, значит этот угол острый, тогда треугольник ACD остроугольный и высота DE лежит внутри треугольника.
ΔAED: ∠AED = 90°, ∠EAD = 45°, ⇒ треугольник равнобедренный,
AE = ED.
Пусть СЕ = х, тогда АЕ = ED = 6√2 - х.
ΔCED: tg∠ECD = ED/CE
2 = (6√2 - x) / x
2x = 6√2 - x
3x = 6√2
x = 2√2
CE = 2√2 см
Приложения:

Новые вопросы
Математика,
6 лет назад
Литература,
6 лет назад
Математика,
10 лет назад
Математика,
10 лет назад
Алгебра,
10 лет назад