В прямоугольном треугольнике DCE с прямым углом C проведена биссектриса EF, причём FC=13 см. Найдите расстояние от точки F до прямой DE
Ответы на вопрос
Ответил Hrisula
126
Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно между ними. FH ⊥ЕD.
∠Н=∠C=90°
Искомое расстояние - длина отезка FH.
Т.к. ЕF биссектриса, в прямоугольных треугольниках ∆ СЕF и ∆ HЕF
∠СЕF=∠HEF, EF- общая гипотенуза.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
∆ СЕF=∆ HЕF Сходственные элементы равных треугольников равны. =>
FH=FC=13 см.
Приложения:

Новые вопросы