Геометрия, вопрос задал ruruneoko , 2 года назад

В парке при музее решили разбить клумбу в форме четырёхугольника. Две стороны этой клумбы (AD и BC), если бы можно было продлить их на бесконечную длину, никогда б не пересеклись. Другие две (AB и CD), если бы можно было продлить их на бесконечную длину, сошлись бы когда-нибудь одной точке. Оба тупых угла, образованных смежными сторонами этого четырёхугольника, оказались равны. Найди AB, если известно, что клумба занимает площадь 4536 кв. м, а две её стороны имеют размеры AD=132 м и BC=12 м.

Ответы на вопрос

Ответил nurbergenalladerbi
2

Ответ:

ВС

Объяснение:

12 ОТВЕТ МОЙ ЭТО МОЙ ОТВЕТ


vitalyconcrety: 12
Новые вопросы