В комнате несколько человек . Каждый знает хотя бы один из трех языков . Шесть человек знают английский язык,шесть -немецкий,семь - французкий , Четверо зн ают английский и немецкий,трое -немецкий и французкий ,двое-французкий и английский . Один человек знает все три языка. Сколько человек в комнате?Сколько из них знают только английский? С ПОЯСНЕНИЕМ
Ответы на вопрос
Ответил Segrif
0
Складываем число людей, знающих английский, немецкий, французский: 6 + 6 + 7 = 19. Однако в это число дважды вошли люди, знающие (только) два языка и трижды - три языка. Вычитаем людей, знающих (хотя бы) два языка: 19 - (4 + 3 + 2) = 10. Т.к. в каждое из трех вычтенных множеств включено множество людей, получается, мы вычли его три раза, и 10 - количество людей, знающих меньше трех языков. Еще раз прибавляем людей, знающих три языка: 10 + 1 = 11 человек в комнате всего.
В итоге получилось:
1 человек знает только английский
3 человека знают только французский
0 человек - только немецкий
3 - только английский и немецкий
2 - только немецкий и французский
1 - только английский и французский
1 - все три языка
Задача очень легко решается, если изобразить ее на диаграмме, даже без всех этих рассуждений про множества
В итоге получилось:
1 человек знает только английский
3 человека знают только французский
0 человек - только немецкий
3 - только английский и немецкий
2 - только немецкий и французский
1 - только английский и французский
1 - все три языка
Задача очень легко решается, если изобразить ее на диаграмме, даже без всех этих рассуждений про множества
Ответил Segrif
0
Только сейчас заметил, что вопрос задачи был не про общее количество людей. В любом случае, нормальное решение уже выложили выше
Новые вопросы