В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 3 студента. Найти вероятность того, что среди отобранных студентов окажется хотя бы один отличник
Ответы на вопрос
Ответил AlyaShi
0
Ответ:
Пошаговое объяснение:
Испытание состоит в том, что из 12 студентов выбирают 9 студентов.
Этот выбор можно осуществить С⁹₁₂ способами.
Значит число исходов испытания m=С⁹₁₂=12!/((12-9)·!9!)=10·11·12/(3!)=220
Событию А благоприятствуют те исходы, в которых из восьми отличников выбрано пять и из оставшихся четырех студентов группы выбраны все четыре.
Число исходов испытания, благоприятствующих наступлению события А равно C⁵₈·C⁴₄.
C⁴₄=1
C⁵₈=8!/((8-5)!·5!)=6·7·8/3!=56 способов.
m=56
По формуле классической вероятности
р(А)=m/n=56/220=14/55≈0,25
Новые вопросы
Русский язык,
2 года назад
Другие предметы,
2 года назад
Математика,
7 лет назад
Физика,
7 лет назад
Математика,
8 лет назад