Упростить выражение Корень из ((sin3x+sin4x+sin5x) / (sinx+sin2x+sin3x)) +2
если x принадлежит (п/2;п)
Ответы на вопрос
Ответил Аноним
0
sin3x+sin4x+sin5x=2sin4xcosx+sin4x=sin4x(2cosx+1)=2sin2xcos2x(2cosx+1)
sinx+sin2x+sin3x=2sin2xcosx+sin2x=sin2x(2cosx+1)
2sin2xcos2x(2cosx+1)/sin2x(2cosx+1)=2cos2x=4cos²x-2
√((sin3x+sin4x+sin5x) / (sinx+sin2x+sin3x)) +2 =√4cos²x-2+2=√4cos²x=-2cosx
sinx+sin2x+sin3x=2sin2xcosx+sin2x=sin2x(2cosx+1)
2sin2xcos2x(2cosx+1)/sin2x(2cosx+1)=2cos2x=4cos²x-2
√((sin3x+sin4x+sin5x) / (sinx+sin2x+sin3x)) +2 =√4cos²x-2+2=√4cos²x=-2cosx
Ответил Аноним
0
Спасибо!
Новые вопросы
География,
2 года назад
Українська мова,
2 года назад
Химия,
10 лет назад
Литература,
10 лет назад
История,
10 лет назад