Угол при основании равнобедренного треугольника равен 30°. найти периметр треугольника если его площадь равна 16√3см².
Ответы на вопрос
Ответил Andr1806
0
В равнобедренном треугольнике АВС: ВН - высота, биссектриса и медиана. В прямоугольном треугольнике АВН против угла 30° лежит катет ВН. Пусть ВН=х см, тогда АВ=2х см, а АН=х√3см (по Пифагору).
Площадь треугольника равна 16√3.
S=(1/2)AC*BH = AH*BH =x√3*x = x²√3. Значит x²√3=16√3.
х=4. Тогда АВ=ВС=8см, АС=8√3 см.
Периметр треугольника равен 16+8√3 = 8(2+√3) см.
Площадь треугольника равна 16√3.
S=(1/2)AC*BH = AH*BH =x√3*x = x²√3. Значит x²√3=16√3.
х=4. Тогда АВ=ВС=8см, АС=8√3 см.
Периметр треугольника равен 16+8√3 = 8(2+√3) см.
Приложения:

Новые вопросы
Русский язык,
2 года назад
Информатика,
2 года назад
Математика,
9 лет назад
Химия,
9 лет назад
Алгебра,
9 лет назад