Геометрия, вопрос задал zhtjykuyiohpj33 , 1 год назад

Трикутник АВС задано координатами своїх вершин: А(1; – 1; 2),
В(4; 2; – 1), С(1; 5; 2). Знайдіть:
1) висоту, проведену до найбільшої сторони;
2) площу трикутника;
3) найбільший кут трикутника.

Ответы на вопрос

Ответил dnepr1
1

Трикутник АВС задано координатами своїх вершин:

А(1; – 1; 2),В(4; 2; – 1), С(1; 5; 2).

Знайдіть:

1) висоту, проведену до найбільшої сторони;

2) площу трикутника;

3) найбільший кут трикутника.

Находим длины сторон.

AB = В(4; 2; – 1) - А(1; – 1; 2) = (3; 3; -3).

|AB| = √(3² + 3² + (-3)²) = √(9 + 9 + 9) = √27 = 3√3 = 5,196152.

BC = С(1; 5; 2) - В(4; 2; – 1) = (-3; 3; 3).

|BC| = √(-3)² + 3² + 3²) = √(9 + 9 + 9) = √27 = 3√3 = 5,196152.

AC = С(1; 5; 2) - А(1; – 1; 2) = (0; 6; 0).

|AC| = √(0² + 6² + 0²) = √(0 + 36 + 0) = √36 = 6.

Так как треугольник равнобедренный, то высоту к большей стороне (а это АС) найдём по Пифагору.

h(AC) = √(27 – (6/2)²) = √(27 – 9) = √18 = 3√2.

S = (1/2)h*AC = (1/2)* 3√2*6 = 9√2 кв. ед.

Наибольший угол лежит против наибольшей стороны, то есть угол В.

B = 2arcsin(3/(3√3) = 2arcsin(1/√3) = 2*35,2644 = 70,5288°.

Новые вопросы