сумма трех чисел составляющих возрастающую арифметическую прогрессию,равна 30.Если от первого числа отнять 5,от второго 4,а третье число оставить без изменений ,то полученные числа составят геометрическую прогрессию.Найти эти числа
Ответы на вопрос
Ответил helenaal
6
1. Имеем арифметическую прогрессию:
а₁, а₂, а₃, где а₂ =а₁ + д; или а₁ = а₂ - д;(1) а₃ = а₂ + д;(2)
по условию: а₁+ а₂ + а₃ = 30 (3), но сумма трех членов равна также: (а₁ + а₃)·3:2 = 30, ⇒ а₁ + а₃ = 20 (4). Сравнивая (3) и (4) (или вычитая из (3) (4)), получим: а₂ =10;
2. По условию: (а₁ - 5); (а₂ - 4); а₃ - геометрическая прогрессия.
Исходя из ее свойств (а₂ - 4)/(а₁ - 5) = а₃/(а₂ - 4) или, т.к. а₂ =10 и ⇒ а₂ - 4 = 6; 6/(а₁ - 5) = а₃/6 (5).
Преобразуем (5) и выразим а₁ и а₃ через а₂: пригодятся выражения (1) и (2).
а₃·(а₁ - 5) = 36 ; (а₂+д)·(а₂ -д -5) =36, Вставив а₂ = 10, получим: (10+д)·(10 - д - 5) =36; (10+д)·(5 - д) = 36;
50 + 5д -10д - д² = 36; д² + 5д - 14 = 0;
д₁ = (-5 + √(25+56):2 = (-5+9):2 = 2
(т.к. по условию прогрессия возрастающая, отрицательный д₂ на берем)
тогда а₁ = а₂ - д = 10 - 2 = 8; а₃ = а₂ +д =10 + 2 = 12;
Прогрессия наша: 8, 10, 12
Проверка: (а₂-4)/(а₁-5) = 12/(а₂-4) = 6:3=12:6, и новая прогрессия (3,6,12) геометрическая.
а₁, а₂, а₃, где а₂ =а₁ + д; или а₁ = а₂ - д;(1) а₃ = а₂ + д;(2)
по условию: а₁+ а₂ + а₃ = 30 (3), но сумма трех членов равна также: (а₁ + а₃)·3:2 = 30, ⇒ а₁ + а₃ = 20 (4). Сравнивая (3) и (4) (или вычитая из (3) (4)), получим: а₂ =10;
2. По условию: (а₁ - 5); (а₂ - 4); а₃ - геометрическая прогрессия.
Исходя из ее свойств (а₂ - 4)/(а₁ - 5) = а₃/(а₂ - 4) или, т.к. а₂ =10 и ⇒ а₂ - 4 = 6; 6/(а₁ - 5) = а₃/6 (5).
Преобразуем (5) и выразим а₁ и а₃ через а₂: пригодятся выражения (1) и (2).
а₃·(а₁ - 5) = 36 ; (а₂+д)·(а₂ -д -5) =36, Вставив а₂ = 10, получим: (10+д)·(10 - д - 5) =36; (10+д)·(5 - д) = 36;
50 + 5д -10д - д² = 36; д² + 5д - 14 = 0;
д₁ = (-5 + √(25+56):2 = (-5+9):2 = 2
(т.к. по условию прогрессия возрастающая, отрицательный д₂ на берем)
тогда а₁ = а₂ - д = 10 - 2 = 8; а₃ = а₂ +д =10 + 2 = 12;
Прогрессия наша: 8, 10, 12
Проверка: (а₂-4)/(а₁-5) = 12/(а₂-4) = 6:3=12:6, и новая прогрессия (3,6,12) геометрическая.
Новые вопросы
Английский язык,
2 года назад
Русский язык,
2 года назад
Математика,
2 года назад
Другие предметы,
2 года назад
Алгебра,
7 лет назад