Сумма бесконечно убывающей геометрической прогрессии равна 20, а b1 = 15. Найди сумму квадратов членов данной прогрессии.
Ответы на вопрос
Ответил teledima00
1
Ответ:
240
Объяснение:
Пусть b₁, b₂...bₙ - члены бесконечно убывающей геометрической прогрессии, b₁ = 15 и S = 20.
Сумма бесконечно убывающей геометрической прогрессии вычисляется по формуле:
Найдём из этой формулы q
Требуется найти сумму следующей последовательности:
b₁² + b₂² + ... + bₙ²
Член геометрической прогрессии вычисляется по формуле:
Преобразуем сумму, которую требуется найти:
Пусть t = q² = 1 / 16. Тогда:
Рассмотрим последовательность:
1 + t + ... tⁿ⁻¹
Эта последовательность является геометрической прогрессией с b₁ = 1 и q = t = 1 / 16
Так как q < 1, то геометрическая прогрессия является бесконечно убывающей.
Найдём её сумму:
Новые вопросы
Английский язык,
2 года назад
Английский язык,
2 года назад
История,
2 года назад
Қазақ тiлi,
2 года назад
Математика,
8 лет назад