СРОЧНО геометрия выполнить задание
Дано: Параллелограмм ABCD, Биссектриса угла A пересекающая BC в точке E
Доказать: (Треугольник) ABE - равнобедренный
Найти: Сторону AD если BE - 10см, а Pпар-м = 64см
Ответы на вопрос
Ответил dirdar030510
0
Ответ:
В параллелограмме ВС || АД
и углы ЕАД и АЕВ равны как накрест лежащие при секущей АЕ
Углы ЕАД и ЕАВ равны как углы, образованные биссектрисой угла А.
Итого - в треугольнике АВЕ угол А равен углу Е => треугольник равнобедренный
Теперь с периметром
ВЕ = 10 см
АВ = 10 см как вторая сторона равнобедренного треугольника
СД = АБ как противоположные стороны параллелограмма
ВС = АД тоже как стороны параллелограмма
Итого
2*АД + 2*10 = 62
АД + 10 = 31
АД = 21 см
Объяснение:
dirdar030510:
вот
Новые вопросы