Математика, вопрос задал Yanagk , 7 лет назад

Скільки різних натуральних пятицифрових чисел можна скласти з 0,1,2,3,7 якщо цифри у числі не повторюются?

Ответы на вопрос

Ответил juliaivanovafeo
0

Ответ:

480

Пошаговое объяснение:

Общее количество различных наборов при выборе k  элементов из n  без возвращения и без учёта порядка рассчитывается по формуле:

C_{n}^{k} = frac{n!}{(n - k)!}, где n! = 1 cdot 2 cdot 3 cdot ... cdot n

Рассуждаем: поскольку нас интересуются пятизначные числа, то 0 на первом месте стоять не может, а только одна из цифр 1,2,3,7, т.е. всего 4 варианта.

На втором, третьем, четвертом и пятом местах может стоять одна из пяти возможных цифр 0,1,2,3,7, т.е. нужно посчитать количество таких четырехзначных комбинаций. Т.к. выбираем 4 элемента из 5, то количество таких наборов рассчитываем по формуле:

C_{5}^{5} = frac{5!}{(5 - 4)!} = frac{1cdot 2 cdot 3 cdot 4 cdot 5}{1}  = 120 (наборов)

Вспоминаем, что на первом месте быть размещена одна из 4 цифр, т.е. 4 варианта, тогда всего наборов из 5 цифр будет 4*120 = 480

Новые вопросы