sin x = 0,8 Xэ(0;pi/2) найти cos x
odgrhfsbhegefybehi:
Здравствуйте. Можно задать вопрос?
Ответы на вопрос
Ответил RerGar
1
Ответ:
Для решения этой задачи можно воспользоваться тригонометрической связью между синусом и косинусом:
cos^2 x + sin^2 x = 1
Отсюда следует:
cos^2 x = 1 - sin^2 x
Так как sin x = 0,8, то:
cos^2 x = 1 - 0,8^2 = 0,36
Извлекая корень, получаем:
cos x = ±0,6
Так как x находится в интервале от 0 до pi/2, то cos x должен быть положительным, поэтому:
cos x = 0,6.
Новые вопросы
География,
1 год назад
Французский язык,
1 год назад
Биология,
1 год назад
Геометрия,
1 год назад
Биология,
7 лет назад
Русский язык,
7 лет назад