Алгебра, вопрос задал азазаз25 , 9 лет назад

sin в 4х степени + cos в 4х КАК РАЗЛОЖИТЬ

Ответы на вопрос

Ответил NNNLLL54
0
sin^4x+cos^4x=\\=(sin^4x+2sin^2xcdot cos^2x+cos^4x)-2sin^2xcdot cos^2x=\\=(sin^2x+cos^2x)^2-(sqrt2sinxcdot cosx)^2=\\=1^2-(sqrt2cdot frac{1}{2}sin2x)^2=(1-frac{sqrt2}{2}sin2x)(1+frac{sqrt2}{2}sin2x)
Новые вопросы