sin^4x+cos^4x=cos^2*2x

Ответы на вопрос
Ответил artyrarytyan
0
First, let's rewrite the equation using the identity cos^2x = 1 - sin^2x:
sin^4x + (1 - sin^2x)^2 = cos^2*2x
Expanding (1 - sin^2x)^2:
sin^4x + 1 - 2sin^2x + sin^4x = cos^2*2x
Combine like terms:
2sin^4x - 2sin^2x + 1 = cos^2*2x
Next, let's use the double-angle identity for cosine:
cos^2*2x = (cos2x)^2 = (2cos^2x - 1)^2
Substituting this back into the equation:
2sin^4x - 2sin^2x + 1 = (2cos^2x - 1)^2
Expanding (2cos^2x - 1)^2:
2sin^4x - 2sin^2x + 1 = 4cos^4x - 4cos^2x + 1
Rearranging the terms:
2sin^4x - 4cos^4x + 2sin^2x - 4cos^2x + 1 - 1 = 0
2sin^4x - 4cos^4x + 2sin^2x - 4cos^2x = 0
Divide all terms by 2:
sin^4x - 2cos^4x + sin^2x - 2cos^2x = 0
Factor out common terms:
(sin^2x - 2cos^2x) * (sin^2x + 1 - 2cos^2x) = 0
sin^2x - 2cos^2x = 0 or sin^2x + 1 - 2cos^2x = 0
Using the identity sin^2x = 1 - cos^2x:
1 - cos^2x - 2cos^2x = 0
-3cos^2x = -1
cos^2x = 1/3
Taking the square root of both sides:
cosx = ±√(1/3)
sin^2x + 1 - 2cos^2x = 0
sin^2x + 1 - 2(1/3) = 0
sin^2x - 2/3 = 0
sin^2x = 2/3
Taking the square root of both sides:
sinx = ±√(2/3)
So the solutions for x are:
x = arcsin(√(2/3)), x = π - arcsin(√(2/3)), x = π + arcsin(√(2/3)), x = 2π - arcsin(√(2/3))
sin^4x + (1 - sin^2x)^2 = cos^2*2x
Expanding (1 - sin^2x)^2:
sin^4x + 1 - 2sin^2x + sin^4x = cos^2*2x
Combine like terms:
2sin^4x - 2sin^2x + 1 = cos^2*2x
Next, let's use the double-angle identity for cosine:
cos^2*2x = (cos2x)^2 = (2cos^2x - 1)^2
Substituting this back into the equation:
2sin^4x - 2sin^2x + 1 = (2cos^2x - 1)^2
Expanding (2cos^2x - 1)^2:
2sin^4x - 2sin^2x + 1 = 4cos^4x - 4cos^2x + 1
Rearranging the terms:
2sin^4x - 4cos^4x + 2sin^2x - 4cos^2x + 1 - 1 = 0
2sin^4x - 4cos^4x + 2sin^2x - 4cos^2x = 0
Divide all terms by 2:
sin^4x - 2cos^4x + sin^2x - 2cos^2x = 0
Factor out common terms:
(sin^2x - 2cos^2x) * (sin^2x + 1 - 2cos^2x) = 0
sin^2x - 2cos^2x = 0 or sin^2x + 1 - 2cos^2x = 0
Using the identity sin^2x = 1 - cos^2x:
1 - cos^2x - 2cos^2x = 0
-3cos^2x = -1
cos^2x = 1/3
Taking the square root of both sides:
cosx = ±√(1/3)
sin^2x + 1 - 2cos^2x = 0
sin^2x + 1 - 2(1/3) = 0
sin^2x - 2/3 = 0
sin^2x = 2/3
Taking the square root of both sides:
sinx = ±√(2/3)
So the solutions for x are:
x = arcsin(√(2/3)), x = π - arcsin(√(2/3)), x = π + arcsin(√(2/3)), x = 2π - arcsin(√(2/3))
Новые вопросы