Решите уравнение 2cos(x-3pi/2)*cos(2pi-x)=(sqrt3)*sinx и найдите все корни на отрезке [-pi; pi/2]
Ответы на вопрос
Ответил igorShap
6
2cos(x-3π/2)*cos(2π-x)=√3*sin(x)
2cos(3π/2-x)*cos(-x)=√3*sin(x)
2*(-sin(x))*cos(x)=√3*sin(x)
sin(x)*cos(x)=-√3/2 sin(x)
sin(x)=0 или cos(x)=-√3/2
x=πn, n∈Z x=±(5π/6)+2πk, k∈Z
Отрезку [-π; π/2] принадлежат корни -π; -5π/6; 0.
Новые вопросы
Русский язык,
2 года назад
Русский язык,
2 года назад
Английский язык,
2 года назад
Русский язык,
2 года назад
Физика,
7 лет назад