Математика, вопрос задал musa1399 , 8 лет назад

решите неравенство |x-1|<=(9x^2)/2+2,5x
x-1 под модулем

Ответы на вопрос

Ответил Luluput
0
 |x-1| leq  frac{9x^2}{2} +2.5x
 |x-1| leq  frac{9x^2}{2} + frac{5x}{2}
 |x-1| leq  frac{9x^2+5x}{2}
 left { {{ x-1 leq  frac{9x^2+5x}{2} } atop { x-1 geq - frac{9x^2+5x}{2} }} right.
 left { {{ 2(x-1) leq {9x^2+5x}} atop { 2(x-1) geq - ({9x^2+5x)}} right.
 left { {{ 2x-2 leq {9x^2+5x}} atop { 2x-2 geq - {9x^2-5x}} right.
 left { {{ 2x-2 {-9x^2-5x leq 0}} atop { 2x-2 +{9x^2+5x geq 0}} right.
 left { {{  {-9x^2-3x+2 leq 0}} atop {{9x^2+7x-2 geq 0}} right.
 left { {{  {9x^2+3x-2  geq  0}} atop {{9x^2+7x-2 geq 0}} right.
 left { {{  {9(x- frac{1}{3} )(x+ frac{2}{3})  geq  0}} atop {{9(x- frac{2}{9})(x+1)  geq 0}} right.

9 x^{2} +3x-2=0
D=3^3-4*9*(-2)=81
x_1= frac{-3+9}{18} = frac{1}{3}
x_2= frac{-3-9}{18} =- frac{2}{3}

9 x^{2} +7x-2=0
D=7^2-4*9*(-2)=121
x_1= frac{-7+11}{18} = frac{2}{9}
x_1= frac{-7-11}{18} = -1

----------+------[-2/3]----- - -----[1/3]-----+--------
//////////////////////                     //////////////////
----+------[-1]----- - -----[2/9]----------+-----------
///////////////                  //////////////////////////

Ответ: (- ∞ ;-1] ∪ [ frac{1}{3} ;+ ∞ )
Новые вопросы