Решить уравнение:
3sin^2x-sinxcosx=2
Ответы на вопрос
Ответил pavlinapolyakova
0
3Sin²x-SinxCosx=2
3Sin²x-SinxCosx=2(Sin²x+Cos²x)
Sin²x-SinxCosx-2Cos²x=0
Уравнение однородное 2 степени. Разделим егоо на Cos²x
Tg²x-Tgx-2=0
Tgx=y
y²-y-2=0
D=9>0
y=(1+3)/2=2 или y=(1-3)/2= -1
Tgx=2⇒ x=arctg2+πn,n∈Z
Tgx= -1 ⇒x= -π/4+πk,k∈Z
3Sin²x-SinxCosx=2(Sin²x+Cos²x)
Sin²x-SinxCosx-2Cos²x=0
Уравнение однородное 2 степени. Разделим егоо на Cos²x
Tg²x-Tgx-2=0
Tgx=y
y²-y-2=0
D=9>0
y=(1+3)/2=2 или y=(1-3)/2= -1
Tgx=2⇒ x=arctg2+πn,n∈Z
Tgx= -1 ⇒x= -π/4+πk,k∈Z
Новые вопросы
Математика,
2 года назад
Қазақ тiлi,
2 года назад
Химия,
8 лет назад
Литература,
8 лет назад
Математика,
9 лет назад
Литература,
9 лет назад