Алгебра, вопрос задал tekilakila , 8 лет назад

Решить систему
X^2+y^2=37
Xy=6

Ответы на вопрос

Ответил snow99
0

 {x}^{2}  +  {y}^{2}  = 37 \ xy = 6 \  \  {x}^{2}  +  {y}^{2}  + 2xy - 2xy = 37 \ xy = 6 \  \  {(x + y)}^{2}  - 2xy = 37 \ xy = 6 \  \  {(x + y)}^{2}  - 2 times 6 = 37 \ xy = 6 \  \  {(x + y)}^{2}  = 49 \ xy = 6 \  \ 1)x + y = 7 \ xy = 6 \  \ y = 7 - x \ x(7 - x) = 6 \  \ y = 7 - x \ 7x -  {x}^{2}  = 6 \  \ y = 7 - x \  {x}^{2}  - 7x + 6 = 0 \  \ x1 = 6 \ y1 = 1 \  \ x2 = 1 \ y2 = 6 \  \ 2) x + y =  - 7 \ xy = 6 \  \ y =  - 7 - x \ x( - 7 - x) = 6 \  \ y =  - 7 - x \  - 7x -  {x}^{2}  = 6 \  \ y =  - 7 - x \  {x }^{2}  + 7x + 6 = 0 \  \ x1 =  - 6 \ y1 =  - 1 \  \ x2 =  - 1 \ y2 =  - 6
Ответ: (6; 1), (1; 6), (-6; -1), (-1; -6)
Ответил NeZeRAvix
0

 tt +left{begin{array}{I} tt x^2+y^2=37  \tt xy=6  | cdot 2end{array}}

 tt x^2+2xy+y^2=49\ (x+y)^2=49\ x+y= pm 7\ \ left[begin{array}{I} left{begin{array}{I}tt x+y=7  \ tt xy=6 end{array}}  \ left{begin{array}{I}tt  x+y=-7  \ tt xy=6 end{array}} end{array}}  Leftrightarrow   left[begin{array}{I} tt (x;  y)=  (1;  6), (6;  1) \ tt (x;  y)= (-6;  -1),  (-1;  -6) end{array}}


Ответ: (6; 1), (1; 6), (-6; -1), (-1; -6)

Новые вопросы