Алгебра, вопрос задал bruhmomentos , 7 лет назад

решить относительно x уравнение
\sqrt{x} * \sqrt{x+2} =a-1

Ответы на вопрос

Ответил Artem112
2

\sqrt{x} \cdot \sqrt{x+2} =a-1

Так как в уравнении есть квадратные корни, то запишем ОДЗ:

\begin{cases} x  \geqslant 0\\ x+2\geqslant 0 \end{cases}\Rightarrow x\geqslant 0

Также заметим, что в левой части записано произведение двух неотрицательных выражений. Значит, правая часть уравнения также неотрицательна:

a-1\geqslant 0

a\geqslant 1

Таким образом, при a<1 уравнение не имеет корней.

Предположим, что a\geqslant 1. Тогда:

(\sqrt{x} \cdot \sqrt{x+2})^2 =(a-1)^2

x(x+2) =(a-1)^2

x^2+2x -(a-1)^2=0

D_1=1^2-1\cdot(-(a-1)^2)=1+(a-1)^2

x=-1\pm\sqrt{1+(a-1)^2}

Проверим, удовлетворяют ли найденные корни ОДЗ.

Для первого корня получим:

-1-\sqrt{1+(a-1)^2}\geqslant 0

-\sqrt{1+(a-1)^2}\geqslant 1

\sqrt{1+(a-1)^2}\leqslant- 1

Однако, квадратный корень не может принимать отрицательных значений. Значит, рассматриваемое выражение не является корнем уравнения ни при каких значениях параметра a.

Для второго корня получим:

-1+\sqrt{1+(a-1)^2}\geqslant 0

\sqrt{1+(a-1)^2}\geqslant 1

1+(a-1)^2\geqslant 1

(a-1)^2\geqslant 0

Последнее условие выполняется при любых значениях параметра a. Но как отмечалось ранее, уравнение может иметь корни только при a\geqslant 1. Значит, данное выражение является корнем уравнения при a\geqslant 1.

Ответ:

при a<1: нет корней,

при a\geqslant 1: x=-1+\sqrt{1+(a-1)^2}

Новые вопросы