Решение задач с помощью уравнений №412 Все имеющиеся апельсины можно разложить в 3 пакета или в 5 коробок. Сколько килограммов апельсинов имеется, если в пакет вмещается на 2 кг апельсинов больше, чем в коробку? №413(б) Существуют ли 3 последовательных нечетных числа, сумма которых ровна 69? №414(б) Купили карандаши, кисти и линейки, всего 43 штуки. Линеек купили на 7 штук меньше чем кистей, и в 4 раза меньше, чем карандашей. Сколько купили карандашей, кистей и линеек в отдельности?
Ответы на вопрос
№412.
Пусть имеется х кг апельсинов. В пакет вмещается х/3 кг, в коробку - х/5 или х/3-2 кг. Составим и решим уравнение:
х/5=х/3-2 |*15
3x=5х-30
5х-3х=30
2х=30
х=30:2
х=15
Ответ: имеется 15 килограммов апельсинов.
№413(б).
Пусть n - первое нечётное число, тогда два последующих нечётных числа - (n+2) и (n+4). Их сумма равна n+n+2+n+4 или 69. Составим и решим уравнение:
n+n+2+n+4=69
3n=69-6
3n=63
n=63:3
n=21
n+2=21+2=23
n+4=21+4=25
Ответ: да, это числа 21, 23 и 25.
№414(б).
Пусть купили х линеек, тогда кистей купили (х+7), а карандашей - 4х. Всего купили х+х+7+4х или 43 предмета. Составим и решим уравнение:
х+х+7+4х=43
6х=43-7
6х=36
х=36:6
х=6
х+7=6+7=13
4х=4*6=24
Ответ: купили 6 линеек, 13 кистей и 24 карандаша.