Алгебра, вопрос задал hgfd , 8 лет назад

Расписать решение
1.Решить уравнение(выбрать корни)
2.Решить неравенство

Приложения:

Ответы на вопрос

Ответил InvisorTech
0

 1)  a)  3mathrm{tg}x - 2mathrm{ctg}x - 1= 0 \ \ 3dfrac{sin x}{cos x} - 2dfrac{cos x}{sin x} - 1= 0  / * mathrm{tg}x ne 0 \ \ 3mathrm{tg^{2}}x - 2 - mathrm{tg}x = 0 \ \ mathrm{tg}x = t \ \ 3t^{2} - t - 2 = 0 \ D = 1 + 24 = 25 \ \ t_{1} = dfrac{1+5}{6} = 1  ;  t_{2} = -dfrac{2}{3} \ \ $left[ <br />      begin{gathered} <br />        mathrm{tg}x = 1 \ <br />        mathrm{tg}x = -dfrac{2}{3} \ <br />      end{gathered} <br />right.$


 $left[ <br />      begin{gathered} <br />        x = dfrac{pi}{4} + pi n, n in Z \ <br />        x = -mathrm{arctg}dfrac{2}{3} + pi k, k in Z<br />      end{gathered} <br />right.$<br />


 b)  pi + dfrac{pi}{4} = dfrac{5pi}{4}


Ответ: a) π/4 + πn, n ∈ Z, arctg(-2/3) + pi k, k in Z

b) 5π/4, arctg(-2/3) + π/2, arctg(-2/3) + 3π/2


 2)  sqrt{1-9log ^{2}_{8}x} - 4log_{8}x > 1 \ \ ODZ:  $left{ <br />      begin{gathered} <br />        x > 0 \ <br />        1-9log_{8}^{2}x ge 0  (1) \ <br />      end{gathered} <br />right.$


 (1):  1 - 9log_{8}^{2}x ge 0 \ \ 9log_{8}^{2}x le 1 \ \ log_{8}^{2}x le dfrac{1}{9} \ \ |log_{8}x| le dfrac{1}{3} \ \ -dfrac{1}{3} le log_{8}x le dfrac{1}{3} \ \ log_{8}8^{-frac{1}{3}} le log_{8}x le log_{8}8^{frac{1}{3}} \ \ 8^{-frac{1}{3}} le x le 8^{frac{1}{3}} \ \ dfrac{1}{2} le x le 2  ;  x in [dfrac{1}{2};2]<br />


 x in [dfrac{1}{2} ;2]


Решим уравнение:

 sqrt{1-9log ^{2}_{8}x} > 1 + 4log_{8}x \ \ sqrt{1-9log_{2^{3}}^{2}x} > 1 + 4log_{2^{3}}x \ \ sqrt{1 -log_{2}^{2}x} > 1 + dfrac{4}{3}log_{2}x \ \  (sqrt{1 -log_{2}^{2}x})^{2} > (1 + dfrac{4}{3}log_{2}x)^{2}

$left{ 
begin{gathered} 
1 - log_{2}^{2}x  textgreater   1 + dfrac{8}{3}log_{2}x + dfrac{16}{9}log_{2}^{2}x  (2) \ 
1 + dfrac{4}{3}log_{2}x ge 0  (3)\ 
end{gathered}
ИЛИ
$left{ 
      begin{gathered} 
       1 - log_{2}^{2}x  textgreater  -(1 + dfrac{8}{3}log_{2}x + dfrac{16}{9}log_{2}^{2}x)  (3) \ 
        1 + dfrac{4}{3}log_{2}x  textless   0  (4) \ 
      end{gathered} 
right.$ 

 (2):  1 - log_{2}^{2}x > 1 + dfrac{8}{3}log_{2}x + dfrac{16}{9}log_{2}^{2}x \ \ log_{2}x = t \ \ 1 - t^{2} > 1 + dfrac{8t}{3} + dfrac{16t^{2}}{9} \ \ 9 - 9t^{2} > 9 + 24t + 16t^{2} \ \ -25t^{2} - 24t > 0 \ \ -t(25t + 24) > 0<br /><br /><br />$left{ begin{gathered} t  textless   0 \ t  textgreater   -dfrac{24}{25} \ end{gathered} right.$

t in (-dfrac{24}{25}; 0)

 -dfrac{24}{25} < log_{2}x < 0 \ \ log_{2}2^{-frac{24}{25}} < log_{2}x < log_{2}2^{0} \ \ 2^{-frac{24}{25}}< x < 1  ;  x in (dfrac{1}{sqrt[25]{2^{24}}}; 1)


 (3):  1 + dfrac{4}{3}log_{2}x ge 0 \ \ log_{2}x ge log_{2}2^{-frac{3}{4}} \ \ x ge 2^{-frac{3}{4}}  ;  x in [dfrac{1}{sqrt[4]{2^{3}}}; +infty)


Пересечём (2) и (3):

 x in [dfrac{1}{sqrt[4]{2^{3}}};1)


(3):  x in R \ \ (4):  1 +  dfrac{4}{3}log_{2}x  textless   0 \ \ log_{2}x  textless   - dfrac{3}{4} \ \ x  textless    dfrac{1}{ sqrt[4]{2^{3}}}


Пересечём (2) и (3) с (3) и (4):

x in (-infty; 1)

Учтём ОДЗ (рисунок 3):

 x in [dfrac{1}{2}; 1)


Ответ: x ∈ [1/2; 1)

Приложения:
Новые вопросы