Радиус основания цилиндра относится к его высоте как 1:2. Найдите объём цилиндра, если диагональ его осевого сечения равна 12корень 2 .
Ответы на вопрос
Ответил Iife20
0
Ответ: 432π
Объяснение: обозначим радиус r, a высоту h. Если r/h=1/2, то: h=2r. 2 радиуса
- это диаметр, и диаметр основания равен высоте. Высота, радиус и диагональ осевого сечения цилиндра образуют равнобедренный прямоугольный треугольник, в котором диаметр основания и высота являются катетами а диагональ гипотенузой. В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз, поэтому h=диаметру=12√2/√2=
=12, тогда радиус=12/2=6
Найдём площадь основания по формуле:
Sосн=πr²=π×6²=36π
Теперь найдём объем цилиндра зная его площадь основания и высоту по формуле: V=Sосн×h=36π×12=432π(ед³)
Приложения:

Новые вопросы
Русский язык,
2 года назад
Русский язык,
2 года назад
Алгебра,
2 года назад
Физика,
2 года назад
История,
8 лет назад