Прямые а и b параллельны. Найдите х.

Ответы на вопрос
Ответ:
∠х=140°
Объяснение:
ДАНО:
а || b; AC и BC – секущие; ∠ДАВ=130°; ∠С=90°;
НАЙТИ: ∠х
=========================================
РЕШЕНИЕ (вар. 1)
∠ДАВ и ∠ВАС – смежные. Сумма смежных углов равна 180° →
∠ВАС=180–∠ДАВ=180–130=50°
∠х является внешним углом ∆АВС.
ВНЕШНИЙ УГОЛ ТРЕУГОЛЬНИКА РАВЕН СУММЕ ДВУХ ВНУТРЕННИХ УГЛОВ ТРЕУГОЛЬНИКА НЕ СМЕЖНЫХ С НИМ → ∠х=∠ВАС+∠С=50+90=140°
ОТВЕТ: ∠х=140°
===============================
Вариант 2: (рис.2 с красным цветом)
Проведём ЕМ || СН
∠ДАВ=∠АЕО (соответственные при а || b и секущей СД)
∠АЕК=∠С=90° (соответственные при ЕМ || СВ и секущей АС)
∠КЕО=∠АЕО–∠АЕК=130–90=40°
∠КЕО=∠МКВ (соответственные при а || b и секущей ЕМ)
∠МКВ+∠х=180° (односторонние при ЕМ || СН и секущей а) →
∠х=180–40°=140°

