Геометрия, вопрос задал gursach2003 , 7 лет назад

Прямоугольник ABCD вписан в окружность. Вычислите площадь прямоугольника , если длина окружности равна 20П см , а AB:BC= 3:4

Ответы на вопрос

Ответил takushnir
0

диаметр окружности равен 20π/π=20, т.к. длина окружности равна πд, где д - диаметр окружности. Если х- коэффициент пропорциональности, то 3х и 4х - это смежные стороны прямоугольника, площадь прямоугольника тогда равна 3х*4х=12х²

По теореме ПИфагора (4х)²+(3х)²=20²

х²=20²/25=4²=16, значит, площадь прямоугольника равна 12*16

=192/кв. ед./

Ответ 192 кв. ед.

Новые вопросы