Геометрия, вопрос задал hbnfvfif , 9 лет назад

  прямая, параллельная основаниям трапеции ABCD пересекает ее боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF,если AD =36. BC=18. CF:DF=7:2 (ПОМОГИТЕ ПОЖАЛУЙСТА)

Ответы на вопрос

Ответил Andr1806
0
Продолжим боковые стороны трапеции до пересечения в точке G. Тогда имеем треугольник АGD, в котором ВС = (1/2)*AD (ВС=18, AD=36 это дано). Нам также дано, что сторона трапеции CD = 7*Х+2*Х =9*Х. Значит и отрезок GС = 9*Х (так как ВС - средняя линия). Треугольники EGF и BGC подобны, так как EF параллельна ВС. Из подобия имеем: ВС/EF = GC/GF или  18/EF = 9*X/16*X, откуда EF=32.
Новые вопросы