Математика, вопрос задал manasievameri2002 , 6 лет назад

Prove that cosπ/5 + cos3π/5 = 1/2

Ответы на вопрос

Ответил Guerrino
1

Notice that equation x^5-1=0 has five roots, whose sum equals 0 (from Vieta's theorem). It also means that their real parts also sum up to zero, i.e. \cos\dfrac{2\pi}{5}+\cos\dfrac{4\pi}{5}-\cos\dfrac{\pi}{5}-\cos\dfrac{3\pi}{5}+1 = 0 \Leftrightarrow \cos\dfrac{\pi}{5}+\cos\dfrac{3\pi}{5} = 1+\cos\dfrac{2\pi}{5}+\cos\dfrac{4\pi}{5}

By trig identities we have \cos\dfrac{2\pi}{5}+\cos\dfrac{3\pi}{5}+\cos\dfrac{4\pi}{5}  + \cos\dfrac{\pi}{5} = 2\cos\dfrac{\pi}{2}\cdot\ldots + 2\cos\dfrac{\pi}{2}\cdot\ldots = 0 (the same result can be obtained by symmetry of the picture), so  \cos\dfrac{\pi}{5}+\cos\dfrac{3\pi}{5} = 1+\cos\dfrac{2\pi}{5}+\cos\dfrac{4\pi}{5} = 1-\left(\cos\dfrac{\pi}{5}+\cos\dfrac{3\pi}{5} \right) \Leftrightarrow \cos\dfrac{\pi}{5}+\cos\dfrac{3\pi}{5} =1/2.

Новые вопросы