Постройте график функции
Ответы на вопрос
Ответил arsenlevadniy
0
Область определения.
![y= sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }-1, \
frac{ x^{2} -3x+2}{x-1} geq 0, \
x-1 neq 0, x neq 1, \
x^2-3x+2=0, x_1=1, x_2=2, \
(x-1)^2(x-2) geq 0, \
x-2 geq 0, \
x geq 2, \
D_y=[2;+infty).
y= sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }-1, \
frac{ x^{2} -3x+2}{x-1} geq 0, \
x-1 neq 0, x neq 1, \
x^2-3x+2=0, x_1=1, x_2=2, \
(x-1)^2(x-2) geq 0, \
x-2 geq 0, \
x geq 2, \
D_y=[2;+infty).](https://tex.z-dn.net/?f=y%3D+sqrt%5B4%5D%7B+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D-1%2C+%5C%0A+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+geq+0%2C+%5C%0Ax-1+neq+0%2C++x+neq+1%2C+%5C%0Ax%5E2-3x%2B2%3D0%2C++x_1%3D1%2C++x_2%3D2%2C+%5C%0A%28x-1%29%5E2%28x-2%29+geq+0%2C+%5C%0Ax-2+geq+0%2C+%5C%0Ax+geq+2%2C+%5C%0AD_y%3D%5B2%3B%2Binfty%29.%0A)
Область значений.
![y=sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }-1, \
y+1=sqrt[4]{ frac{ x^{2} -3x+2}{x-1} } geq 0, \
y+1 geq 0, \
y geq -1, \
E_y=[-1;+infty). y=sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }-1, \
y+1=sqrt[4]{ frac{ x^{2} -3x+2}{x-1} } geq 0, \
y+1 geq 0, \
y geq -1, \
E_y=[-1;+infty).](https://tex.z-dn.net/?f=y%3Dsqrt%5B4%5D%7B+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D-1%2C+%5C%0Ay%2B1%3Dsqrt%5B4%5D%7B+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D+geq+0%2C+%5C%0Ay%2B1+geq+0%2C+%5C%0Ay+geq+-1%2C+%5C%0AE_y%3D%5B-1%3B%2Binfty%29.)
Функция общего вида, т.е. ни четная ни нечетная.
Нули функции.
![x=0notin D_y, \ y=0, sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }-1=0, \ sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }=1, \ frac{ x^{2} -3x+2}{x-1}=1, \ frac{ x^{2} -3x+2}{x-1}-1=0, \ frac{ x^{2} -3x+2-x+1}{x-1}=0, \ frac{ x^{2} -4x+3}{x-1}=0, \ x^2-4x+3=0, x_1=1notin D_y, x_2=3,\ (3;0). x=0notin D_y, \ y=0, sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }-1=0, \ sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }=1, \ frac{ x^{2} -3x+2}{x-1}=1, \ frac{ x^{2} -3x+2}{x-1}-1=0, \ frac{ x^{2} -3x+2-x+1}{x-1}=0, \ frac{ x^{2} -4x+3}{x-1}=0, \ x^2-4x+3=0, x_1=1notin D_y, x_2=3,\ (3;0).](https://tex.z-dn.net/?f=x%3D0notin+D_y%2C+%5C+y%3D0%2C+sqrt%5B4%5D%7B+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D-1%3D0%2C+%5C+sqrt%5B4%5D%7B+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D%3D1%2C+%5C+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D%3D1%2C+%5C+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D-1%3D0%2C+%5C+frac%7B+x%5E%7B2%7D+-3x%2B2-x%2B1%7D%7Bx-1%7D%3D0%2C+%5C+frac%7B+x%5E%7B2%7D+-4x%2B3%7D%7Bx-1%7D%3D0%2C+%5C+x%5E2-4x%2B3%3D0%2C++x_1%3D1notin+D_y%2C++x_2%3D3%2C%5C+%283%3B0%29.)
Промежутки знакопостоянства.
![ygtrless0, \ sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }-1gtrless0, \ sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }gtrless1, \ frac{ x^{2} -3x+2}{x-1}gtrless1, \ frac{ x^{2} -3x+2}{x-1}-1gtrless0, \ frac{ x^{2} -4x+3}{x-1}gtrless0, \ frac{(x-1)(x-3)}{x-1}gtrless0, \ (x-1)^2(x-3)gtrless0, \ x-3gtrless0, \ xgtrless3, \ 2<x<3, xin(2;3), y<0, \ x>3, xin(3;+infty), y>0. ygtrless0, \ sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }-1gtrless0, \ sqrt[4]{ frac{ x^{2} -3x+2}{x-1} }gtrless1, \ frac{ x^{2} -3x+2}{x-1}gtrless1, \ frac{ x^{2} -3x+2}{x-1}-1gtrless0, \ frac{ x^{2} -4x+3}{x-1}gtrless0, \ frac{(x-1)(x-3)}{x-1}gtrless0, \ (x-1)^2(x-3)gtrless0, \ x-3gtrless0, \ xgtrless3, \ 2<x<3, xin(2;3), y<0, \ x>3, xin(3;+infty), y>0.](https://tex.z-dn.net/?f=ygtrless0%2C+%5C+sqrt%5B4%5D%7B+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7D-1gtrless0%2C+%5C+sqrt%5B4%5D%7B+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D+%7Dgtrless1%2C+%5C+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7Dgtrless1%2C+%5C+frac%7B+x%5E%7B2%7D+-3x%2B2%7D%7Bx-1%7D-1gtrless0%2C+%5C+frac%7B+x%5E%7B2%7D+-4x%2B3%7D%7Bx-1%7Dgtrless0%2C+%5C+frac%7B%28x-1%29%28x-3%29%7D%7Bx-1%7Dgtrless0%2C+%5C+%28x-1%29%5E2%28x-3%29gtrless0%2C+%5C+x-3gtrless0%2C+%5C+xgtrless3%2C+%5C+2%26lt%3Bx%26lt%3B3%2C+xin%282%3B3%29%2C+y%26lt%3B0%2C+%5C+x%26gt%3B3%2C%C2%A0xin%283%3B%2Binfty%29%2C+y%26gt%3B0.)
Производные функции.


Критические точки.
![y'=0, frac{1}{4} ( frac{x-1}{ x^{2} -3x+2})^{ frac{3}{4}}=0, \ frac{x-1}{ x^{2} -3x+2}=0, \ x^{2} -3x+2 neq0,\ (x-1)(x-2) neq 0, \ x neq 1notin D_y, \ x neq 2; \ x=2, y= sqrt[4]{ frac{ 2^{2} -3cdot2+2}{2-1} }-1=sqrt[4]{4 -6+2}-1=sqrt[4]{0}-1=-1;\ (2;-1). y'=0, frac{1}{4} ( frac{x-1}{ x^{2} -3x+2})^{ frac{3}{4}}=0, \ frac{x-1}{ x^{2} -3x+2}=0, \ x^{2} -3x+2 neq0,\ (x-1)(x-2) neq 0, \ x neq 1notin D_y, \ x neq 2; \ x=2, y= sqrt[4]{ frac{ 2^{2} -3cdot2+2}{2-1} }-1=sqrt[4]{4 -6+2}-1=sqrt[4]{0}-1=-1;\ (2;-1).](https://tex.z-dn.net/?f=y%27%3D0%2C+frac%7B1%7D%7B4%7D+%28+frac%7Bx-1%7D%7B+x%5E%7B2%7D+-3x%2B2%7D%29%5E%7B+frac%7B3%7D%7B4%7D%7D%3D0%2C+%5C+frac%7Bx-1%7D%7B+x%5E%7B2%7D+-3x%2B2%7D%3D0%2C+%5C+x%5E%7B2%7D+-3x%2B2+neq0%2C%5C+%28x-1%29%28x-2%29+neq+0%2C+%5C+x+neq+1notin+D_y%2C+%5C+x+neq+2%3B+%5C+x%3D2%2C+y%3D+sqrt%5B4%5D%7B+frac%7B+2%5E%7B2%7D+-3cdot2%2B2%7D%7B2-1%7D+%7D-1%3Dsqrt%5B4%5D%7B4+-6%2B2%7D-1%3Dsqrt%5B4%5D%7B0%7D-1%3D-1%3B%5C+%282%3B-1%29.)
Промежутки монотонности.
![y'gtrless0, frac{1}{4} (frac{x-1}{ x^{2} -3x+2})^{ frac{3}{4}}gtrless0, \ frac{1}{4} sqrt[4]{ (frac{x-1}{ x^{2} -3x+2})^3} >0, \ xin D_y, y'>0, ynearrow. y'gtrless0, frac{1}{4} (frac{x-1}{ x^{2} -3x+2})^{ frac{3}{4}}gtrless0, \ frac{1}{4} sqrt[4]{ (frac{x-1}{ x^{2} -3x+2})^3} >0, \ xin D_y, y'>0, ynearrow.](https://tex.z-dn.net/?f=y%27gtrless0%2C++frac%7B1%7D%7B4%7D+%28frac%7Bx-1%7D%7B+x%5E%7B2%7D+-3x%2B2%7D%29%5E%7B+frac%7B3%7D%7B4%7D%7Dgtrless0%2C+%5C+frac%7B1%7D%7B4%7D+sqrt%5B4%5D%7B+%28frac%7Bx-1%7D%7B+x%5E%7B2%7D+-3x%2B2%7D%29%5E3%7D+%26gt%3B0%2C+%5C+xin+D_y%2C+y%27%26gt%3B0%2C+ynearrow.)
Промежутки выпуклости-вогнутости.

Область значений.
Функция общего вида, т.е. ни четная ни нечетная.
Нули функции.
Промежутки знакопостоянства.
Производные функции.
Критические точки.
Промежутки монотонности.
Промежутки выпуклости-вогнутости.
Приложения:

Ответил arsenlevadniy
0
Функция ни четная ни нечетная, т.к. область определения несимметричная.
Ответил arsenlevadniy
0
Возрастает и выпуклая вверх на всей области определения.
Ответил arsenlevadniy
0
2<x<3 - график функции расположен ниже оси Ох, х>3 - график выше Ох
Ответил Vampire100
0
А yнаиб. и yнаим.?
Ответил arsenlevadniy
0
Производная не меняет знак на всей области определения.
Новые вопросы