Помогите решить уравнение: 5^|x-1|=0,2^|x+3|
Ответы на вопрос
Ответил ShirokovP
0
Решим графически и убедимся в том, что данные графики не пересекаются, а значит и не имеют общих решений
Приложения:

Ответил mmb1
0
5^|x-1|=0,2^|x+3|
5^|x-1|=(1/5)^|x+3|
5^|x-1|=5^(-|x+3|)
|x-1|=-|x+3|
|x-1|+|x+3|=0
так как модуль всегда больше равен 0 то оба модуля =0
x=1 x=-3 такого не может быть
Решений нет
5^|x-1|=(1/5)^|x+3|
5^|x-1|=5^(-|x+3|)
|x-1|=-|x+3|
|x-1|+|x+3|=0
так как модуль всегда больше равен 0 то оба модуля =0
x=1 x=-3 такого не может быть
Решений нет
Приложения:

Новые вопросы