Алгебра, вопрос задал potonaev , 7 лет назад

Помогите решить тригонометрию
Корень из 0,5 cosx = sin x/2

Ответы на вопрос

Ответил alex6712
0

sqrt{frac{1}{2}cos x} = sin left(frac{x}{2}right)\left{ begin{aligned}&frac{1}{2}cos x geqslant 0 \&sin left(frac{x}{2}right) geqslant 0  \  &frac{1}{2}  cos  x =  { sin}^2 left(frac{x}{2}right) end{aligned} right.  \ left{ begin{aligned}&cos x geqslant 0 \&sin left(frac{x}{2}right) geqslant 0  \  &cos  x -  2 :{ sin}^2 left(frac{x}{2}right) = 0end{aligned} right.

По формуле cos x = 1 - 2 : sin^2 left(frac{x}{2}right)

left{ begin{aligned}&cos x geqslant 0 \&sin left(frac{x}{2}right) geqslant 0  \  &1 -  4 :{ sin}^2 left(frac{x}{2}right) = 0end{aligned} right.

Рассмотрим  1 -  4 :{ sin}^2 left(frac{x}{2}right) = 0

1 -  4 :{ sin}^2 left(frac{x}{2}right) = 0\{ sin}^2 left(frac{x}{2}right) = frac{1}{4}\sin left(frac{x}{2}right) = pm frac{1}{2}

Вернёмся к системе

left{ begin{aligned}&cos x geqslant 0 \&sin left(frac{x}{2}right) geqslant 0  \  &sin left(frac{x}{2}right) =  pm frac{1}{2}end{aligned} right.\left{ begin{aligned}&cos x geqslant 0\  &sin left(frac{x}{2}right) = frac{1}{2}end{aligned} right.\left{ begin{aligned}&cos x geqslant 0\  &left[ begin{aligned} &frac{x}{2}=frac{pi}{6} +2pi k_1, : k_1 in mathbb{Z}\&frac{x}{2}=frac{5pi}{6} +2pi k_2, : k_2 in mathbb{Z}end{aligned} right. end{aligned} right.\left{ begin{aligned}&cos x geqslant 0\  &left[ begin{aligned} &x=frac{pi}{3} +4pi k_1, : k_1 in mathbb{Z}\&x=frac{5pi}{3} +4pi k_2, : k_2 in mathbb{Z}end{aligned} right. end{aligned} right. \ left[ begin{aligned} &x=frac{pi}{3} +4pi k_1, : k_1 in mathbb{Z}\&x=frac{5pi}{3} +4pi k_2, : k_2 in mathbb{Z}end{aligned} right.

Ответ:

left[ begin{aligned} &x=frac{pi}{3} +4pi k_1, : k_1 in mathbb{Z}\&x=frac{5pi}{3} +4pi k_2, : k_2 in mathbb{Z}end{aligned} right. \Downarrow\ x=pmfrac{pi}{3} +4pi k, : k in mathbb{Z}

Новые вопросы