Математика, вопрос задал sum2002 , 7 лет назад

Помогите решить пример только полностью и с описанием

Приложения:

Ответы на вопрос

Ответил spasibo3pajbrh
0
перепишем нашу систему в виде:
 frac{4(x - y)}{x + y}  +  frac{3(x + y)}{x - y}  = 13 \( x - y)(x + y) = 12
сделаем замену:
х-у=а
х+у=b

 frac{4a}{b}  +  frac{3b}{a}  = 13 \ a  : cdot : b = 12

в первом уравнении введем замену

 frac{a}{b}  = t

получим

4t +  frac{3}{t}  = 13 \ 4 {t }^{2} - 13t  + 3 = 0 \ t_1,_2=  frac{13± 11}{8}   \  t_1 = 3 \  t_2 =  frac{1}{4}
значит, делая обратную замену t=a/b, получаем, что наша система эквивалентна
двум следующим:

первая система
{a/b=3
{a•b=12

a=3b
3b²=12
b¹'²=±2
a¹'²=±6

вторая система
{a/b=¼
{a•b=12

b=4a
4a²=12
a³'⁴=±√3
b³'⁴=±4√3

получили 4 значения а и b
возвращаемся к замене
х-у=а
х+у=b
получаем 4 системы с переменными х и у

и находим их

(1)
а¹=6,
b¹=2

{х-у=6
{х+у=2

2x=8
x¹=4
y¹= - 2

(2)
а²=-6,
b²=-2
{х-у= - 6
{х+у= - 2

x²= -4
у²=2


(3)
а³=√3
b³=4√3

{х-у= √3
{х+у= 4√3
2x³=5√3

x³=2,5√3
y³=1,5√3


(4)
а³= - √3
b³= - 4√3

{х-у= -√3
{х+у=- 4√3

x⁴= -2,5√3
y⁴= -1,5√3

Ответ :

x¹=4
y¹= - 2

x²= -4
у²=2

x³=2,5√3
y³=1,5√3

x⁴= -2,5√3
y⁴= -1,5√3


Новые вопросы