Помогите решить
Log0.5(5x-1)-log0,5(1-2x)<1
Ответы на вопрос
Ответил Арестея
0
поскольку логарифмы по основанию одинаковые мы можем использовать формулу
Log0.5(5x-1)-log0,5(1-2x)<1
Log0.5((5x-1)(1-2x))<1
Log0.5((5x-1)(1-2x))<log0,5(0.5)
(5x-1)(1-2x)<0.5
5х-10х^2-1+2х<0.5
-10x^2+6.5 -1 < 0
х1= 0.4
х2= 0.25
дальше рисуешь по методу интервалов и получается
х є (− ∞; 1/4) U (2/5; +∞)
Log0.5(5x-1)-log0,5(1-2x)<1
Log0.5((5x-1)(1-2x))<1
Log0.5((5x-1)(1-2x))<log0,5(0.5)
(5x-1)(1-2x)<0.5
5х-10х^2-1+2х<0.5
-10x^2+6.5 -1 < 0
х1= 0.4
х2= 0.25
дальше рисуешь по методу интервалов и получается
х є (− ∞; 1/4) U (2/5; +∞)
Ответил Арестея
0
если помогла- отметь как лучшее, пожалуйста ))
Новые вопросы
Русский язык,
2 года назад
Обществознание,
9 лет назад
Геометрия,
9 лет назад
Математика,
10 лет назад