Математика, вопрос задал pufffiksex , 2 года назад

Помогите решить интеграл пожалуйста

Приложения:

olgaua64: х/2 √(х^2+4) нет возможности внести ответ
olgaua64: х/2 √(х^2+4) +2ln|x+ √(х^2+4) |+C

Ответы на вопрос

Ответил olgaua64
2

Відповідь:

Покрокове пояснення:

sh y=(e^y -e^(-y))/2

Введем замену х=2sh y тогда dx=2 ch y dy

√(x^2+4)=√(4(1+sh^2 y))=2ch y

Имеем

∫√(x^2+4)dx=4∫ch^2 y dy=sh^2(2y) +2y+C

Распишем

х=2sh y → shy=x/2 → y=l lnx+√(x^2+4)|-ln2

Также найдем

sh 2y =2sh y×ch y= 2shy×√(1+sh^2y)= x√(1+x^2/4)=x/2√(x^2+4)

В итоге имеем

∫√(x^2+4)dx=x/2√(x^2+4)+2ln|x+√(x^2+4)|+C


qkiwsxkes: а у кого правильно ?
olgaua64: Они одинаковие
qkiwsxkes: но вить они абсолютно по разному решены, и ответы разные
olgaua64: Ответ идентичен, просто у меня х/2 умножений на корень, а у него корень умножений на х и все поделить на 2. И под логарифмом местами слагаемие изменени. По сути тоже
Аноним: честно говоря, ваше решение мне нравиться намного больше )
olgaua64: Без проблем, дело вкуса:)
olgaua64: Интегральчик сложноват, как не крути
Ответил Аноним
2

Ответ:

Решение дано на фотографии.

Приложения:
Новые вопросы