Алгебра, вопрос задал Кариночка78 , 7 лет назад

Помогите, пожалуйста вычислить предел. Только распишите каждое действие очень-очень подробно.

Приложения:

Ответы на вопрос

Ответил NNNLLL54
0

limlimits _{n to infty}frac{nsqrt[4]{3n+1}+sqrt{81n^4-n^2+1}}{(n+sqrt[3]{n})sqrt{5-n+n^2}}=Big [frac{:n^2}{:n^2}Big ]=limlimits_{n to infty}frac{frac{nsqrt[4]{3n+1}}{ncdot n}+frac{sqrt{81n^4-n^2+1}}{n^2}}{frac{(n+sqrt[3]{n})sqrt{5-n+n^2}}{ncdot n}}=\\= limlimits _{n to infty}frac{sqrt[4]{frac{3}{n^3}+frac{1}{n^4}}+sqrt{81-frac{1}{n^2}+frac{1}{n^4}}}{(1+frac{1}{n^{2/3}})sqrt{frac{5}{n^2}-frac{1}{n}+1}}=frac{0+9}{1cdot 1}=9

P.S.; ; frac{sqrt{81n^4-n^2+1}}{n^2}=sqrt{frac{81n^4-n^2+1}{n^4}}=sqrt{frac{81n^4}{n^4}-frac{n^2}{n^4}+frac{1}{n^4}}=sqrt{81-frac{1}{n^2}+frac{1}{n^4}}\\frac{sqrt[4]{3n+1}}{n}=sqrt[4]{frac{3n+1}{n^4}}=sqrt[4]{frac{3n}{n^4}+frac{1}{n^4}}=sqrt[4]{frac{3}{n^3}+frac{1}{n^4}}\\frac{sqrt{5-n+n^2}}{n}=sqrt{frac{5-n+n^2}{n^2}}=sqrt{frac{5}{n^2}-frac{1}{n}+1}

Новые вопросы