Помогите пожалуйста с решением данного неравенства.
Приложения:

Ответы на вопрос
Ответил mmb1
2
a^6 + 1/a^4 + 2/a >= 4
a^6 + 1/a^4 + 2/a - 4 >=0
попробуем слева сделать квадрат или сумму квадратов, тогда докажем неравенство
поделим на а, так так a>0
a^5 + 1/a^5 + 2/a^2 - 4/a >=0
a^5 + 1/a^5 - 2*1/a^5*a^5 + 2 - 2 + 2*(1/a^2 - 2*1*1/a + 1) = (√a⁵ - 1/√a⁵)² + 2(1/a - 1)² = (√a⁵ - 1/√a⁵)² + (1/a - 1)² + (1/a -1)² ≥ 0
слева стоит сумму трех квадратов - значит слева выражение больше равна 0 всегда
Ответил antonovm
1
Ответ:
Решение : /////////////////////////////
Приложения:

Новые вопросы
География,
1 год назад
Қазақ тiлi,
1 год назад
Математика,
1 год назад
Математика,
1 год назад
История,
7 лет назад
Английский язык,
7 лет назад