Помогите , пожалуйста решить .
Задание звучит так:"Сумма 1/1*3 + 1/3*5 + ....+ 1/(2n-1)(2n+1) =0,48 .Чему равна сумма 1/1*4 + 1/4*7 +....+ 1/(3n-2)(3n+1)
Ответы на вопрос
Ответил IrkaShevko
0
1/(1*3) = 1/2 * (1 - 1/3)
1/(3*5) = 1/2 (1/3 - 1/5)
...
1/((2n-1)*(2n+1)) = 1/2 (1/(2n-1) - 1/(2n+1))
подставим и получим:
1/2(1 - 1/3 + 1/3 - 1/5 + ... + 1/(2n-1) - 1/(2n+1)) = 1/2(1 - 1/(2n+1)) = 1/2(2n/(2n+1)) = n/(2n+1) = 0,48
n = 0,96n + 0,48
0,04n = 0,48
n = 12
аналогично во втором, только там множитель будет 1/3
1/3( 1 - 1/4 + 1/4 - 1/7 + ... + 1/(3n-2) - 1/(3n+1)) =
= 1/3(1 - 1/(3n + 1)) = n/(3n+1)
n/(3n+1) = 12/(36+1) = 12/37
1/(3*5) = 1/2 (1/3 - 1/5)
...
1/((2n-1)*(2n+1)) = 1/2 (1/(2n-1) - 1/(2n+1))
подставим и получим:
1/2(1 - 1/3 + 1/3 - 1/5 + ... + 1/(2n-1) - 1/(2n+1)) = 1/2(1 - 1/(2n+1)) = 1/2(2n/(2n+1)) = n/(2n+1) = 0,48
n = 0,96n + 0,48
0,04n = 0,48
n = 12
аналогично во втором, только там множитель будет 1/3
1/3( 1 - 1/4 + 1/4 - 1/7 + ... + 1/(3n-2) - 1/(3n+1)) =
= 1/3(1 - 1/(3n + 1)) = n/(3n+1)
n/(3n+1) = 12/(36+1) = 12/37
Новые вопросы
Химия,
2 года назад
Математика,
2 года назад
Математика,
8 лет назад
Химия,
8 лет назад
Математика,
9 лет назад
Алгебра,
9 лет назад