Алгебра, вопрос задал masha01021 , 2 года назад

Помогите пожалуйста решить интеграл ​

Приложения:

Ответы на вопрос

Ответил NNNLLL54
2

Ответ:

Применяем формулу синуса двойного угла  sin2\alpha =2\, sin\alpha \cdot cos\, \alpha  и формулы понижения степеней:   sin^2\alpha =\dfrac{1-cos2\alpha }{2}   , cos^2\alpha =\dfrac{1+cos2\alpha }{2}  .  

\displaystyle \int\limits_ {-\frac{\pi}{2}}^{\frac{\pi }{2}}\, sin^2\frac{x}{4}\cdot cos^4\frac{x}{4}\, dx=\int\limits_ {-\frac{\pi}{2}}^{\frac{\pi }{2}}\Big(sin^2\frac{x}{4}\cdot cos^2\frac{x}{4}\Big)\cdot cos^2\frac{x}{4}\, dx=\\\\\\=\int\limits_ {-\frac{\pi}{2}}^{\frac{\pi }{2}}\, \frac{1}{4}\, sin^2\frac{x}{2}\cdot cos^2\frac{x}{4}\, dx=\frac{1}{4}\int\limits_ {-\frac{\pi}{2}}^{\frac{\pi }{2}}\, \frac{1-cosx}{2}\cdot \frac{1+cos\frac{x}{2}}{2}\, dx=

\displaystyle =\frac{1}{16}\int\limits_ {-\frac{\pi}{2}}^{\frac{\pi }{2}}\, (1-cosx)\cdot (1+cos\frac{x}{2})\, dx=\frac{1}{16}\int\limits_ {-\frac{\pi}{2}}^{\frac{\pi }{2}}\, (1-cosx+cos\frac{x}{2}-cosx\cdot cos\frac{x}{2}\Big)\, dx=\\\\\\=\frac{1}{16}\cdot \Big(x-sinx+2sin\frac{x}{2}\Big)\Big|_{-\frac{\pi }{2}}^{\frac{\pi }{2}}-\frac{1}{16}\int\limits_ {-\frac{\pi}{2}}^{\frac{\pi }{2}}\frac{1}{2}\cdot \Big(cos\frac{3x}{2}+cos\frac{x}{2}\Big)\, dx=

\displaystyle =\frac{1}{16}\cdot \Big(x-sinx+2sin\frac{x}{2}\Big)\Big|_{-\frac{\pi }{2}}^{\frac{\pi }{2}}-\frac{1}{8}\cdot \Big(\frac{2}{3}\, sin\frac{3x}{2}+2sin\frac{x}{2}\Big)\Big|_{-\frac{\pi }{2}}^{\frac{\pi}{2}}=\\\\\\=\frac{1}{16}\cdot \Big(\frac{\pi}{2}-1+2\cdot \frac{\sqrt2}{2}\Big)-\frac{1}{16}\cdot \Big(-\frac{\pi}{2} +1-2\cdot \frac{\sqrt2}{2}\Big)-

\displaystyle -\frac{1}{8}\cdot \Big(\frac{2}{3}\cdot \frac{\sqrt2}{2}+2\cdot \frac{\sqrt2}{2}\Big)+\frac{1}{8}\cdot \Big(-\frac{2}{3}\cdot \frac{\sqrt2}{2}-2\cdot \frac{\sqrt2}{2}\Big)=\\\\\\=\frac{1}{8}\cdot \Big(\frac{\pi }{2}-1+\sqrt2\Big)-\frac{1}{4}\cdot \Big(\frac{\sqrt2}{3}+\sqrt2\Big)=\frac{1}{16}\cdot (\pi -2+2\sqrt2)-\frac{\sqrt2}{12}  

Приложения:

masha01021: можно скриншот пожалуйста
masha01021: е еще здесь скриншот пожалуйста
NNNLLL54: ты хоть спасибо нажимай , а то два часа писала твои примеры
masha01021: и кнопку "лучший ответ "нажму
NNNLLL54: :)))
Новые вопросы