Математика, вопрос задал r23gasf , 9 лет назад

Помогите пожалуйста решить 4 и 5 задания

Приложения:

Ответы на вопрос

Ответил arsenlevadniy
0
log_{x+1}(x+3) textless  1, \ left{begin{array}{c}x+3 textgreater  0,\ left[begin{array}{c}left { {{0 textless  x+1 textless  1,} atop {x+3 textgreater  x+1,}} right.\  left { {{x+1 textgreater  1,} atop {x+3 textless  x+1,}} right.end{array}right. end{array}right. left{begin{array}{c}x textgreater  -3,\ left[begin{array}{c}left { {{-1 textless  x textless  0,} atop {0cdot x textgreater  -2,}} right.\  left { {{x textgreater  0,} atop {0cdot x textless  -2,}} right.end{array}right. end{array}right.
left{begin{array}{c}x textgreater  -3,\ left[begin{array}{c}left { {{-1 textless  x textless  0,} atop {xin R,}} right.\  left { {{x textgreater  0,} atop {xinvarnothing,}} right.end{array}right. end{array}right. left{begin{array}{c}x textgreater  -3,\ left[begin{array}{c} -1 textless  x textless  0, \ xinvarnothing, end{array}right. end{array}right.  left { {{x textgreater  -3} atop {-1 textless  x textless  0,}} right. \ -1 textless  x textless  0, \ xin(-1;0)

|2+frac{x}{9}|^{log_3|2+frac{x}{9}|}=81, \ |2+frac{x}{9}| textgreater  0,  2+frac{x}{9}neq0,  x neq -18; \  |2+frac{x}{9}|=a, \ a^{log_3a}=81, \ log_3a^{log_3a}=log_33^4, \ log_3alog_3a=4, \ log_3^2a=4, \  left [ {{log_3a=-2,} atop {log_3a=2;}} right. left [ {{a=frac{1}{9},} atop {a=9;}} right. left [ {{|2+frac{x}{9}|=frac{1}{9},} atop {|2+frac{x}{9}|=9;}} right.
left[begin{array}{c} 2+frac{x}{9}=-frac{1}{9}, \ 2+frac{x}{9}=frac{1}{9}, \ 2+frac{x}{9}=-9, \ 2+frac{x}{9}=9, end{array}right. left[begin{array}{c} x=-19, \ x=-17, \ x=99, \ x=63. end{array}right.
Ответил iknowthatyoufeelbro
0
В самой нижней совокупности уравнений опечатка. Корень должен быть x=-99, а не x=99.
Новые вопросы