Помогите, пожалуйста!
Исследовать функцию z = (x, y) на экстремум
Приложения:

Ответы на вопрос
Ответил Vasily1975
2
Ответ: функция имеет максимум zmax=12 в точке M(4;4).
Объяснение:
1) Находим первые частные производные:
z'x=y/(2*√x)-1, z'y=√x-2*y+6
Приравнивая их к 0, получаем систему уравнений:
y/(2*√x)-1=0
√x-2*y+6=0
Решая её, находим x=4 и y=4 - координаты единственной критической (стационарной) точки M.
2) Находим вторые частные производные:
z"xx=-y/(4*√x³), z"xy=1/(2*√x), z"yy=-2
и вычисляем их значения в точке M:
A=z"xx(M)=-1/8, B=z"xy(M)=1/4, C=z"yy(M)=-2
3) Составляем выражение A*C-B² и находим его значение. Оно равно 3/16>0, поэтому функция z действительно имеет экстремум в точке М. И так как при этом A<0, то это - максимум. Его значение zmax=4*√4-4²-4+6*4=12.
kuanysnria077:
МНЕ ПОМОГИТЕ ПОЖАЛУЙСТА УМОЛЯЮ
Новые вопросы
Геометрия,
2 года назад
Геометрия,
7 лет назад
Математика,
7 лет назад
Химия,
8 лет назад
Алгебра,
8 лет назад