Математика, вопрос задал elinuraeralieva95 , 6 лет назад

помогите найти общее решение дифференциального уравнения, пожалуйста!!!! срочно
y''+y'-2y=1-x​

Ответы на вопрос

Ответил Viis5
1

я написал решение на листке

Приложения:

elinuraeralieva95: спасибо большое!!!
Ответил dedulja66let
0

Ответ:

Пошаговое объяснение:

y'' + y' - 2y = 1 - x       (1)

1)

Находим общее решение однородного уравнения:

y'' + y' - 2y = 0

Характеристическое уравнение:

k² + k - 2 = 0

k₁,₂ = (-1 ± √ (1² - 4·1·(-2) ) / 2 = (-1 ± √9) /2

k₁ = -2

k₂ = 1

y₀ = C₁·e⁻²ˣ + C₂·eˣ      (2)

2)

Частное решение ищем в виде:

y₁ = Ax + B

y'₁ = A

y''₁ = 0

Подставляем в (1)

0 + A - 2(Ax+B) = 1 - x

A - 2Ax - 2B = 1 - x

-2A = -1     ⇒    A = 1/2

(A - 2B) = 1

2B = A - 1

B = (A - 1) / 2 = - 1/4

Частное решение:

y₁ = x/2 - 1/4

3)

Общее решение:

y = y₀ + y₁

y = C₁·e⁻²ˣ + C₂·eˣ + x/2 - 1/4

Новые вопросы