Площадь квадрата равна 5 см. Найдите: а) длину вписанной окружности.
б) длину дуги, заключенной между соседними точками касания.
в) площадь части квадрата, лежащей вне вписанной окружности.
Ответы на вопрос
Ответил kn98rvpypj
0
Пусть сторона квадрата имеет длину х единиц. Известно, что площадь квадрата равна S. Тогда, так как площадь квадрата находится по формуле S = х^2, то сторона х = S^(1/2). а). В квадрат вписана окружность. Чтобы найти длину вписанной окружности L, необходимо определить её диаметр d. Очевидно, что d = х = S^(1/2). Получаем, L = π ∙ d = π ∙ S^(1/2). б). Окружность имеет четыре точки касания с квадратом. В силу симметричности, длина дуги заключенной между двумя соседними точками касания, будет составлять четвёртую часть длины окружности, то есть l = L/4 = (π ∙ S^(1/2))/4. в) Чтобы найти площадь части квадрата Sв, лежащей вне вписанной окружности, необходимо найти сначала площадь круга Sо. Найдём её по формуле Sо = (π ∙ d^2)/4 = (π ∙ S^(1/2)^2)/4 = π ∙ S/4, и вычтем из площади квадрата: Sв = S – Sо = S – π ∙ S/4 = S ∙ (4 – π)/4.
Новые вопросы
Русский язык,
2 года назад
Русский язык,
2 года назад
Математика,
2 года назад
Математика,
2 года назад
Алгебра,
8 лет назад